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Generalized model for dynamic percolation

O. Bénichou,1,3 J. Klafter,2 M. Moreau,3 and G. Oshanin3
1Laboratoire de Physique The´orique et Mode`les Statistiques, Universite´ Paris–Sud, 91405 Orsay Cedex, France

2School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
3Laboratoire de Physique The´orique des Liquides, Universite´ Paris 6, 4, Place Jussieu, 75252 Paris, France

~Received 23 March 2000!

We study the dynamics of a carrier, which performs a biased motion under the influence of an external field

EW , in an environment which is modeled by dynamic percolation and created by hard-core particles. The
particles move randomly on a simple cubic lattice, constrained by hard-core exclusion, and they spontaneously
annihilate and reappear at some prescribed rates. We determine the density profiles of the ‘‘environment’’
particles, as seen from the stationary moving carrier, and calculate its terminal velocityVc as the function of
the applied field and other system parameters. For sufficiently small driving forces the force exerted on the
carrier by the ‘‘environment’’ particles shows a viscouslike behavior. An analog Stokes formula for such
dynamic percolative environments and the corresponding friction coefficient are derived. We show that the
density profile of the environment particles is strongly inhomogeneous: In front of the stationary moving
carrier the density is higher than the average densityrs , while past the carrier the local density is lower than
rs .

PACS number~s!: 05.40.2a, 05.60.2k, 02.50.2r, 47.40.Nm
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I. INTRODUCTION

The percolation concept has turned out to be very us
for understanding transport and conduction processes
wide range of disordered media, as exemplified by ionic c
duction in polymeric, amorphous, or glassy ceramic elec
lytes, diffusion in biological tissues, and permeability of d
ordered membranes@1–3#.

Most of the situations discussed in Refs.@1–3# pertain,
however, to systems with ‘‘frozen’’ disorder; that is, the ra
dom environment in which a given transport process ta
place does not change in time. This is certainly the cas
many instances, but it is not true in general. As a matte
fact, there are many experimental systems in which the s
percolation picture does not apply, since the structure of
host material undergoes essential structural reorganiza
on a time scale comparable to that at which the trans
itself occurs. A few stray examples of such systems inclu
certain biomembranes@4#, solid protonic conductors@5#, oil-
continuous microemulsions@6–9#, and polymer electrolytes
@10–12#.

More specifically, ionic transport across a biomembra
such as, e.g. gramicidin-A, occurs by the motion of ions
through molecular channels along which they encounter
tential barriers that fluctuate in time. The fluctuations of p
tential barriers may significantly hinder the transport, a
constitute an important transport-controlling factor@4#. In the
case of protonic conduction by the Grotthus mechanism@5#,
site-to-site motion of carriers occurs only between tho
neighboring H2O or NH3 groups that have a favorable rel
tive orientation; thermally activated rotation of these grou
is the structural host-reorganization process interacting w
the carrier motion. Similarly, within oil-continuous micro
emulsions, the charge transport proceeds by charge b
transfered from one water globule to another, as globu
approach each other in their Brownian motion@6–9#. Finally,
in polymer electrolytes, such as, e.g., polyethylene ox
PRE 621063-651X/2000/62~3!/3327~13!/$15.00
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complexed nonstoichiometrically with the ionic salt NaSC
the Na1 ions are largely tetrahedrally coordinated by po
ether oxygenes, but at the same time that Na1 ions hop from
one fourfold coordination site to another, the oxygens the
selves, along with the polymeric backbone, undergo lar
amplitude wagging and even diffusive motion@10–12#.

Clearly, all the above mentioned examples involve tw
characteristic time scales; one which describes the typ
time t between two successive hops of the carrier, and
other associated with a typical renewal timet* of the envi-
ronment itself; the latter is the time needed for the host m
dium to reorganize itself and thereby provide a new set
available pathways for transport. Consequently, the st
percolation picture applies only when the characteristic ti
t* becomes infinitely large. For a finitet* dynamic perco-
lation has to be considered, and one encounters quite a
ferent behavior when compared to the random environme
with quenched disorder. As a result, one observes an Oh
type or Stokes-type linear velocity-force relation for the c
rier’s terminal velocities as a function of the applied field,
contrast to the threshold behavior predicted by the static
colation theory. However, the prefactor in the line
velocity-force relation may depend in a nontrivial way on t
system’s parameters, and this dependence consitutes
main challenge for the theoretical analysis here. On the o
hand, we note that in the above mentioned examples of
dynamic percolative environments quite different physi
processes are responsible for the time evolution of the h
medium. Consequently, one expects that the prefactor in
Stokes-type velocity-force relation should also be depend
on the precise mechanism which underlies the temporal
organization of the environment.

Theoretical modeling of dynamic percolative enviro
ments has followed several avenues, which differ mostly
how the time evolution of the disorder is constrained. Is
constrained~a! by conservation laws or~b! by spatial and
temporal correlations in the renewal events? Early model
3327 ©2000 The American Physical Society
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dynamic percolation@13,14# described the random environ
ment within the framework of a standard bond-percolat
model, in which the strength of each bond fluctuates in ti
between zero and a finite value. The dynamics of the h
medium in these models@13,14# was accounted for by a
series of instantaneous renewal events. These events
assumed to occur at random times, chosen from a rene
time distribution. In the renewal process the positions of
unblocked bonds are reassigned, such that after each ren
event a carrier ‘‘sees’’ a newly defined network. This a
proach is thus characterized by aglobal dynamical disorder
without global conservation laws and correlations, since
entire set of random hopping rates is simultaneously rene
independently of the previous history. Another model ch
acterized by alocal dynamical disorderwas proposed in
Refs.@15# and@16#, and subsequently generalized to the no
Markovian case in Ref.@17#. This model appears to be sim
lar to the previous one, except that here the hopping rate
different sites fluctuateindependentlyof each other. That is
individual bonds, rather than the whole lattice change in
renewal events. To describe the dynamical behavior in
local dynamical disordercase, a dynamical mean-fiel
theory was proposed@15,16#, based on the effective medium
approximation introduced for the analysis of random wa
on lattices with static disorder@18#, and generalized to in
clude the possibility of multistate transformations of t
dynamically random medium@19#. More recently, severa
exactly solvable one-dimensional models withglobal andlo-
cal dynamical disorder were discussed@20#.

In the second approach, which emerged within the con
of the ionic conductivity in superionic solids, the dynamic
percolative environment was considered as a multicom
nent mixture of mobile species in which one or several n
tral components block the carrier component@21#. In particu-
lar, such a situation can be observed in a superio
conductorb9 alumina, doped with two different ionic spe
cies ~e.g., Na1 and Ba21), where small Na1 ions are rather
mobile, while the larger Ba21 ions move essentially slowe
and temporarily block the Na1 ions. Contrary to the previou
line of thought, the dynamics of such a percolative enviro
ment has essential correlations, generated by hard-core
clusion interactions between the species involved; moreo
it obeys the conservation law—the total number of the p
ticles involved is conserved. In Ref.@21#, the frequency-
dependent ionic conductivity of the light species was a
lyzed combining a continuous time random walk approa
for the dynamical problem with an effective medium a
proximation describing the frozen environment of slow sp
cies. Next, as an explanation of the sharp increase of ele
cal conductivity transition in water-in-oil microemulsion
when the volume fraction of water is increased toward
certain threshold value, in Refs.@7# and @8# it was proposed
that the charge carriers are not trapped in the finite w
clusters, but rather a charge on a water globule can propa
by either hopping to a neighboring globule, when they a
proach each other, or via the diffusion of the host glob
itself. This picture was interpreted in terms of a model sim
lar to that employed in Ref.@21#, with the only difference
being that here the ‘‘blockers’’ of Ref.@21# play the role of
the transient charge carriers. In the model of Refs.@7# and
@8#, in which the host dynamics is influenced by spatial c
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relations and conservation of the number of the water gl
ules involved, the conductivity depends, hence, on the rat
cluster rearrangement. Finally, a similar problem of carr
diffusion in an environment created by mobile hard-co
lattice-gas particles was analyzed in Ref.@22# by using the
developed dynamic bond percolation theory of Refs.@13#
and @14#.

In this paper we propose a generalized model of dyna
percolation which shares common features with bo
fluctuating models of Refs.@13–17,19,20# as well as models
involving mobile blockers of Refs.@21,22#. The system we
consider consists of a host lattice, which here is a regu
cubic lattice whose sites support at most a single occupa
hard-core ‘‘environment’’ particles, and a single hard-co
carrier particle. The environment particles move on the
tice by performing a random hopping between the neighb
ing lattice sites, which is constrained by the hard-core int
actions, and may disappear from and reappear~renewal
processes! on the empty sites of the lattice with some pr
scribed rates.1 In turn, the carrier particle is always prese
on the lattice, i.e., it cannot disappear spontaneously, an
subject to a constant external forceEW . Hence the carrier per
forms a biased random walk, which is constrained by
hard-core interactions with the environment particles, a
probes the response of the percolative environment to
internal perturbancy or, in other words, the frictional prop
ties of such a dynamical environment.

An important aspect of our model, which makes it diffe
ent from the previously proposed models of dynamic per
lation, is that we include the hard-core interaction betwe
environment particles and the carrier molecule, such that
latter may influence the dynamics of the environment. T
results, as we proceed to show, in the emergence of com
cated density profiles of the environment particles around
carrier. These profiles, as well as the terminal velocityVc of
the carrier, are determined here explicitly, in terms of
approximate approach of Ref.@23#, which is based on the
decoupling of the carrier-particle-particle correlation fun
tions into the product of pairwise correlations. We show th
the environment particles tend to accumulate in front of
driven carrier, creating a sort of ‘‘traffic jam,’’ which im
pedes its motion. Thus the density profiles around the car
are highly asymmetric: the local density of the environme
particles in front of the carrier is higher than the average, a
approaches the average value as an exponential functio
the distance from the carrier. The characteristic length
amplitude of the density relaxation function are calcula
explicitly. On the other hand, past the carrier the local d
sity is lower than the average: We show that, depending
whether the number of particles in the percolative enviro

1We hasten to remark that diffusive processes, of course,
result in a certain renewal of the environment; however, diffus
processes, as compared to the spontaneous creation and annih
of particles, have completelely different underlying physics and
fluence the evolution of the system in a completely different fa
ion, as we proceed to show. Following the terminology of Re
@13–17,19,20#, we thus choose here to distinguish between dif
sive and creation-annihilation processes, referring to the latter a
renewal processes.



th
n
n
o
n

th
on
e
a

e
s

us
in
le
th
iu
n

e

n
pl
ds
ld
te

a
tiv
y
o
io
ld

th
ro
di

i

th

f-
in
d
in

o
a
a
c

h
de
n
ce

t
rit
lu
io
on
n-
d
oc

-
ion
ec.
i-

la-
the
lf-
er-
of

d in
-

ists

re
icle
r-

hat
d
me

nt
tion
s-

ey
er-
bic
The
alk

h

PRE 62 3329GENERALIZED MODEL FOR DYNAMIC PERCOLATION
ment is explicitly conserved or not, the local density past
carrier may tend to the average value either as an expone
or even as analgebraicfunction of the distance, revealing i
the latter case especially strong memory effects and str
correlations between the particle distribution in the enviro
ment and the carrier position. Further on, we find that
terminal velocity of the carrier particle depends explicitly
the excess density in the ‘‘jammed’’ region in front of th
carrier, as well as on the environment particle density p
the carrier. Both, in turn, are dependent on the magnitud
the velocity, as well as on the rate of the renewal proces
and the rate at which the environment particles can diff
away from the carrier. The interplay between the jamm
effect of the environment, produced by the carrier partic
and the rate of its homogenization due to diffusive smoo
ening and renewal processes, manifests itself as a med
induced frictional force exerted on the carrier, whose mag
tude depends on the carrier velocity. As a consequenc
such a nonlinear coupling, in the general case,~i.e., for arbi-
trary rates of the renewal and diffusive processes!, Vc can be
found only implicitly, as the solution of a nonlinear equatio
relating Vc to the system parameters. This equation sim
fies considerably in the limit of small applied external fiel
EW , and we find that the force-velocity relation to the fie
becomes linear. This implies that the frictional force exer
on the carrier particle by the environment isviscous. This
linear force-velocity relation can be therefore interpreted
the analog of the Stokes formula for the dynamic percola
environment under study; in this case, the carrier velocit
calculated explicitly as well as the corresponding friction c
efficient. In turn, this enables us to estimate the self-diffus
coefficient of the carrier in the absence of an external fie
we show that when only a diffusive rearrangement of
percolative environment is allowed, while the renewal p
cesses are suppressed, the general expression for the
sion coefficient reduces to the one obtained previously
Refs.@24# and@25#. We note that the result of Refs.@24# and
@25# is known to serve as a very good approximation for
self-diffusion coefficient in hard-core lattice gases@26#.

We finally remark that a qualitatively similar physical e
fect was predicted recently for a different model system
volving a charged particle moving at a constant spee
small distance above the surface of an incompressible,
nitely deep liquid. It was shown in Refs.@27,28# that the
interactions between the moving particle and the fluid m
ecules induce an effective frictional force exerted on the p
ticle, producing a local distortion of the liquid interface,
bump, which travels together with the particle and effe
tively increases its mass. The mass of the bump, whic
analogous to the jammed region appearing in our mo
itself depends on the particle’s velocity, resulting in a no
linear coupling between the medium-induced frictional for
exerted on the particle and its velocity@27,28#.

The paper is structured as follows: In Sec. II we formula
the model and introduce basic notations. In Sec. III we w
down the dynamical equations which govern the time evo
tion of the environment particles and of the carrier. Sect
IV is devoted to an analytical solution of these evoluti
equations in the limitt→`; here we also present some ge
eral results on the shape of the density profiles aroun
stationary moving carrier, and on the carrier terminal vel
e
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ity, which is given implicitly as the solution of a transcen
dental equation defining the general force-velocity relat
for the dynamic percolative environment under study. In S
V we derive explicit asymptotic results for the carrier term
nal velocity in the limit of small applied external fieldsEW and
obtain the analog of the Stokes formula for such a perco
tive environment; here we also present explicit results for
friction coefficient of the host medium and for the se
diffusion coefficient of the carrier in the absence of an ext
nal field. The asymptotic behavior of the density profiles
the environment particles around the carrier is discusse
Sec. VI. Finally, we conclude in Sec. VII with a brief sum
mary and discussion of our results.

II. MODEL

The model for dynamic percolation we study here cons
of a three-dimensional simple cubic lattice of spacings, the
sites of which are partially occupied by identical hard-co
environment particles and a single, hard-core, carrier part
~see Fig. 1!. For both types of particles the hard-core inte
actions prevent multiple occupancy of the lattice sites; t
is, no two environment particles or a ‘‘carrier’’ particle an
an environment particle can simultaneously occupy the sa
site, and particles cannot pass through each other.

The occupation of the lattice sites by the environme
particles is characterized by the time-dependent occupa
variableh(rW), rW being the lattice vector of the site in que

FIG. 1. A generalized model of dynamic percolation. Gr
spheres denote the hard-core ‘‘environment’’ particles, which p
form symmetric random hopping among the sites of a simple cu
lattice, and can be spontaneously annihilated and created.
lighter sphere is the carrier, which performs a biased random w

due to an external fieldEW , consrained by hard-core exclusion wit
the environment particles.
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tion. This variable assumes two values:

h~rW !5H 1 if the siterW is occupied

0 if the siterW is empty.
~1!

Next we assume the following dynamics of the environm
particles: The particles can spontaneously disappear from
lattice, and may reappear at random positions and ran
time moments, which is reminiscent of the host medium
namics stipulated in Refs.@13–17,19,20#. We refer to these
two processes generally as renewal processes. In add
the environment particles move randomly within the latt
by performing nearest-neighbor random walks constrai
by the hard-core interactions, which is the main feature
the approach in Refs.@21,22#. We stipulate that any of the
environment particles waits a timedt, which has an expo-
nential probability distribution with a meant* , and then
chooses from a few possibilities:~a! disappearing from the
lattice at rateg, which is realized instantaneously, or~b!
attempting to hop, at a ratel /6, onto one of six neighboring
sites. The hop is actually fulfilled if the target site is n
occupied at this time moment by any other particle; oth
wise, the particle attempting to hop remains at its initial p
sition, and~c! particles may reappear on anyvacant lattice
site with ratef.

Note that the number of particles is not explicitly co
served in such a dynamical model of the environment, wh
occurs because of the presence of the renewal processe
particles diffusion, conversely, conserves the particles n
ber. However, in the absence of attractive particle-part
interactions and external perturbances, the particle distr
tion on the lattice is uniform, and the average occupat

r(t)5h(rW )̄ of the lattice tends, ast→`, to a constant value
rs5 f /( f 1g). This relation can be thought of as the Lan
muir adsorption isotherm@29#.

Hence the limittdi f→` ~or, l→0) corresponds to the
ordinary site percolation model with immobile blocked site
The limit f ,g→0, (tcr ,tan→`), while keeping the ratio
f /g fixed, f /g5rs /(12rs), corresponds to a typical hard
core lattice gas with the number of particles conserved.

At time t50 we introduce at the origin of the lattice a
extra particle, the carrier, whose role is to probe the respo
of the environment modeled by dynamic percolation to
external perturbance. We stipulate that only the carrier ou
all participating particles cannot disappear from the syst
and, moreover, that its motion is biased by some exte
constant force. As a physical realization, we envisage
the carrier is charged, while all other particles are neut
and the system is exposed to constant external electric
EW . The dynamics of the carrier particle is defined as follow
We suppose that the waiting time between successive ju
of the carrier also has an exponential distribution with
mean valuet, which may in general be different from th
corresponding waiting time of the environment particles. A
tempting to hop, the carrier first chooses a hop direction w
probabilities

pm5expFb2 ~EW •eWm!G Y (
n

expFb2 ~EW •eW n!G , ~2!
t
he
m
-

n,

d
f

-
-

h
the
-

e
u-
n

.

se
n
of

,
al
at
l,
ld
:
ps

-
h

whereb is the reciprocal temperature,eW n ~or eWm) stand for
six unit lattice vectors;n,m5$61,62,63%, connecting the
carrier position with six neighboring lattice sites; an
(EW •eW n) denotes the scalar product. We adopt the conven
that 61 corresponds to6X, 62 corresponds to6Y, and
63 corresponds to6Z. The jump is actually fulfilled when
the target lattice site is vacant. Otherwise, as mentio
above, the carrier remains at its position. For simplicity
assume in what follows that the external field is orient
along the X axis in the positive direction, such thatEW
5(E,0,0). Note also that for the choice of the transitio
probabilities as in Eq.~2!, the detailed balance is naturall
preserved.

III. EVOLUTION EQUATIONS

Let P(RW c ,h;t) denote the joint probability that at a mo
ment t the carrier occupies positionRW c and all environment
particles are in configurationh[$h(rW)%. Next, let h rW,m de-
note particle configurations obtained fromh by exchanging
the occupation variables of the sitesrW and rW1eWmW , i.e.
h(rW)↔h(rW1eWmW ), andĥ rW be the configuration obtained from
h by changing the occupation of the siterW as h(rW)↔1
2h(rW). Clearly, the first type of process appears due to r
dom hops of the environment particles, while the second
stems from the renewal processes, i.e. random creation
annihilation of the environment particles. Then, summing
all possible events which can result in the configurat
(RW c ,h) or change this configuration for any other, we fin
that the temporal evolution of the system under study is g
erned by the following master equation:

] tP~RW c ,h;t !5
l

6t*
(
m

(
rWÞRW c2eWmW ,RW c

$P~RW c ,h rW,m;t !

2P~RW c ,h;t !%1
1

t (
m

pm$„12h~RW c!…

3P~RW c2eWmW ,h;t !2„12h~RW c1eWmW !…

3P~RW c ,h;t !%1
g

t*
(

rWÞRW c

$„12h~rW !…

3P~RW c ,ĥ rW;t !2h~rW !P~RW c ,h;t !%

1
f

t*
(

rWÞRW c

$h~rW !P~RW c ,ĥ rW;t !

2„12h~rW !…P~RW c ,h;t !%. ~3!

Note that the terms in the first~second! line of Eq. ~3! de-
scribe random hopping motion of the environment partic
~biased motion of the carrier! in terms of the Kawasaki-type
particle-vacancy exchanges, while the terms in the third
fourth lines account for the Glauber-type decay and crea
of the environment particles.
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A. Mean velocity of the carrier and correlation functions

From Eq.~3! we can readily compute the velocity of th
carrier. Multiplying both sides of Eq.~3! by (RW c•eW1), and
summing over all possible configurations (RW c ,h), we find
that the carrier’s mean velocityVc(t), defined as

Vc~ t ![
d

dt
~RW c•eW1!̄, ~4!

obeys

Vc~ t !5
s

t
$p1„12k~eW1 ;t !…2p21„12k~eW 21 ;t !…%, ~5!

wherek(lW ;t) stands for the carrier-environment particle p
correlation function

k~lW ;t ![ (
RW c ,h

h~RW c1lW !P~RW c ,h;t !. ~6!

In other words,k(lW ;t) can be thought of as the density di
tribution of the environment particles, as seen from a car
which moves with velocityVc(t).

HenceVc(t) depends explicitly on the local density of th
environment particles in the immediate vicinity of the ca
rier. Note that if the environment is perfectly homogeneo
i.e., if for any lW the density profile is constant,k(lW ;t)
5rs , which immediately implies a decoupling betwee
h(RW c1lW ) and P(RW c ,h;t) in Eq. ~6!, then from Eq.~5! we
obtain a trivial mean-field-type result

Vc
(0)5~p12p21!~12rs!

s

t
, ~7!

which states that the frequency of jumps of the carrier p
ticles (t21) is renormalized only by a factor 12rs , which
gives the fraction of successful jumps.

The salient feature of our model is that there are esse
backflow effects. The carrier effectively perturbs the spa
distribution of the environment particles, so that station
density profiles emerge. This can be contrasted with the
lier dynamic percolation models@13–17,19–22# in which the
carrier had no impact on the embedding medium, and he
there was no rearrengement of the host medium around
carrier particle. As a consequencek(lW ;t)Þrs , and k(lW ;t)
approachesrs only at infinite separations from the carrie
i.e., whenulW u→`. Therefore, we rewrite Eq.~5! in the form

Vc~ t !5Vc
(0)2

s

t
$p1„k~eW1 ;t !2rs…2p21„rs2k~eW 21 ;t !…%,

~8!

which explicitly shows the deviation of the mean velocity
the carrier from the mean-field-type result in Eq.~7! due to
the formation of the density profiles.

B. Evolution equations of the pair correlation functions

From Eq.~5! it follows that in order to obtainVc(t), it
suffices to computek(eW 61 ;t). Consequently, we have t
r

,

r-

ial
l

y
r-

ce
he

evaluate the equation governing the time evolution of
pair correlation functions. Multiplying both sides of Eq.~3!

by h(RW c) and summing over all configurations (RW c ,h), we
find thatk(lW ;t) obeys

] tk~lW ;t !5
l

6t*
(
m

~¹m2dlW ,eWm
¹2m!k~lW ;t !2

~ f 1g!

t*
k~lW ;t !

1
f

t*
1

1

t (
m

(
RW c ,h

pm„12h~RW c1em!…

3¹mh~RW c1lW !P~RW c ,h;t !, ~9!

where¹m denotes an ascending finite difference operator
the form

¹m f ~lW ![ f ~lW 1eWm!2 f ~lW !, ~10!

and

d rW,rW85H 1, if the siterW5rW8

0, otherwise.
~11!

The Kronekerd termdlW ,eWm
signifies that the evolution of the

pair correlations, Eq.~9!, proceeds differently at large sepa
rations and at the immediate vicinity of the carrier. Th
stems from the asymmetric hopping rules of the carrier p
ticle defined by Eq.~2!.

Note next that the contribution in the second line in E
~9!, which is associated with the biased diffusion of the c
rier, appears to be nonlinear with respect to the occupa
numbers, such that the pair correlation function is effectiv
coupled to the evolution of the third-order correlations of t
form

T~lW ,eW n ;t ![ (
RW c ,h

h~RW c1lW !h~RW c1eW n!P~RW c ,h;t !.

~12!

That is, Eq.~9! is not closed with respect to the pair corr
lations but rather represents a first equation in the infin
hierachy of coupled equations for higher-order correlat
functions. One faces, therefore, the problem of solving
infinite hierarchy of coupled differential equations, an
needs to resort to an approximate closure scheme.

C. Decoupling approximation

Here we resort to the simplest nontrivial closure appro
mation, based on the decoupling of the third-order corre
tion functions into the product of pair correlations. Mo
precisely, we assume that forlW ÞeW n , the third-order correla-
tion fulfills
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(
RW c ,h

h~RW c1lW !h~RW c1eW n!P~RW c ,h;t !

'S (
RW c ,h

h~RW c1lW !P~RW c ,h;t !D
3S (

RW c ,h
h~RW c1eW n!P~RW c ,h;t !D , ~13!

or, in other words,

(
RW c ,h

h~RW c1lW !h~RW c1eW n!P~RW c ,h;t !'k~lW ;t !k~eW n ;t !.

~14!

The approximate closure in Eq.~14! was already employed
for studying related models of biased carrier diffusion
hard-core lattice gases, and was shown to provide quite
accurate description of both dynamical and stationary-s
behaviors. The decoupling in Eq.~14! was first introduced in
Ref. @23# to determine the properties of a driven carrier d
fusion in a one-dimensional hard-core lattice gas with a c
served number of particles, i.e., without an exchange of p
ticles with the reservoir. Extensive numerical simulatio
performed in Ref.@23# demonstrated that such a decoupli
is quite a plausible approximation for the model under stu
Moreover, a rigorous probabilistic analysis of Ref.@30#
showed that for this model the results based on the de
pling scheme in Eq.~14! are exact. Furthermore, the sam
closure procedure was recently applied to study spreadin
a hard-core lattice gas from a reservoir attached to one o
lattice sites@31#. Again, a very good agreement between t
analytical results and the numerical data was found. N
the decoupling in Eq.~14! was used in a recent analysis of
biased carrier dynamics in a one-dimensional model of
adsorbed monolayer in contact with a vapor phase@32#, i.e.,
a one-dimensional version of the model to be studied h
Also in this case, excellent agreement was observed betw
the analytical predictions and the Monte Carlo simulatio
data@32#. We now show that the approximate closure of t
hierarchy of the evolution equations in Eq.~14! allows us to
reproduce, in the limitf ,g50 and f /g5const, the results o
Refs.@24# and@25#, which are known~see, e.g., Ref.@26#! to
provide a very good approximation for the carrier diffusi
coefficient in three-dimensional hard-core lattice gases w
an arbitrary particle density. We therefore expect that suc
closure scheme will render a plausible description of the c
rier dynamics in a three-dimensional generalized dyna
percolation model. We base our further analysis on this
proximation.

Making use of Eq.~14!, we find from Eq.~9! that the pair
correlations obey the equation

] tk~lW ;t !5
l

6t*
L̃k~lW ;t !1

f

t*
, ~15!

which holds for all lattice sites except for those at the imm
diate vicinity of the carrier, i.e., for alllW except for lW

5$0,eW 61 ,eW 62 ,eW 63%, while at the sites adjacent to the carri
one has
an
te

-
r-
s

.

u-

of
he

t,

n
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en
s
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p-

-

] tk~eW n ;t !5
l

6t*
„L̃1An~ t !…k~eW n ;t !1

f

t*
, ~16!

where n5$61,62,63%. The operatorsL̃ and coefficients
An(t) are given explicitly by

L̃[(
m

Am~ t !¹m2
6~ f 1g!

l
~17!

and

Am~ t ![11
6t*

l t
pm„12k~eWm ;t !…, ~18!

where ¹m has been defined previously in Eq.~10!: m5
$61,62,63%. It is important to emphasize that all coeffi
cients Am(t)5Am(E,Vc ;t), i.e., are functions of both the
applied field and the carrier velocity.

Now several comments about Eqs.~15! and ~16! are in
order. First of all, let us note that Eq.~16! represents, from a
mathematical point of view, the boundary conditions for t
general evolution equation~15!, imposed on the sites in th
immediate vicinity of the carrier. Equations~15! and ~16!
have a different form, since in the immediate vicinity of th
carrier its asymmetric hopping rules perturb essentially
environment particle dynamics. Equations~15! and~16! pos-
sess some intrinsic symmetries and hence the number o
dependent parameters can be reduced. That is, reversin
field, i.e. changingE→2E, leads to the mere replacement
k(eW1 ;t) by k(eW 21 ;t) but does not affectk(eW n ;t) with n5
$62,63%, which implies that

k~eW1 ;t !~2E!5k~eW 21 ;t !~E! and

k~eW n ;t !~2E!5k~eW n ;t !~E! for n5$62,63%. ~19!

In addition, since the transition probabilities in Eq.~2! obey

p25p225p35p23 , ~20!

one evidently has that

k~eW2 ;t !5k~eW 22 ;t !5k~eW3 ;t !5k~eW 23 ;t !, ~21!

and, by symmetry,

A2~ t !5A22~ t !5A3~ t !5A23~ t !, ~22!

which somewhat simplifies Eqs.~15! and ~16!. Finally, we
note that, despite the fact that by using the decoupl
scheme in Eq.~14! we effectively close the system of equ
tions on the level of the pair correlations, the solution of E
~15! and~16! still poses serious technical difficulties. That i
these equations are strongly nonlinear with respect to
carrier velocity, which introduces a gradient term on t
right hand side of the evolution equations for the pair cor
lation, and depends by itself on the values of the envir
ment particle densities in the immediate vicinity of the ca
rier. Below we discuss a solution to this nonlinear proble
focusing on the limitt→`.
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IV. SOLUTION OF THE DECOUPLED EVOLUTION
EQUATIONS IN THE STATIONARY STATE

Consider the limitt→`, and suppose that the densi
profiles and the stationary velocity of the carrier have n
trivial stationary values

k~lW ![ lim
t→`

k~lW ;t !, Vc[ lim
t→`

Vc~ t !, and Am5 lim
t→`

Am~ t !.

~23!

Next define the local deviations ofk(lW ) from the unper-
turbed density as

h~lW ![k~lW !2rs . ~24!

Choosingh(0)50, we obtain the fundamental system
equations

L̃h~lW !50, ~25!

which holds forlW Þ$0,eW 61 ,eW 62 ,eW 63%, while for the special
sites adjacent to the carrier, i.e. forlW 5$0,eW 61 ,eW 62 ,eW 63%,
one has

~ L̃1An!h~eW n!1rs~An2A2n!50. ~26!

Equations~25! and~26! determine the spatial distribution o
the deviation from the unperturbed densityrs in the station-
ary state. Note also that in virtue of the symmetry relations
Eqs. ~21! and ~22!, h(eW 62)5h(eW 63) and A25A225A3
5A23.

The method for solving the coupled nonlinear equatio
~5!, ~25!, and ~26! is as follows: We first solve these equ
tions, supposing that the carrier stationary velocity is a giv
parameter, or, in other words, assuming thatAn entering Eqs.
~25! and~26! are known. In doing so, we obtainh(l) in the
parametrized form

h~lW !5h~lW ;A61 ,A2!. ~27!

Then, substituting particular valueslW 5$eW 61 ,eW 62 ,eW 63% into
Eq. ~27!, and making use of the definition ofAm in Eq. ~18!,
we find a system of three linear equations with three
knowns of the form

An511
6t*

l t
pn„12rs2h~eW n ;A61 ,A2!…, ~28!

wheren5$61,2%, which will allow us to define allAn @and
hence, allh(eW n)] explicitly. Finally, substituting the results
into Eq. ~5!, which can be written down in terms ofAn as

Vc5
ls

6t*
~A12A21!, ~29!

we arrive at a closed-form equation determining the stati
ary velocity implicitly.
-

n

s

n

-

-

A. Formal expression for the density profiles in the dynamic
percolative environment as seen from the stationary

moving carrier

The general solution of Eqs.~25! and ~26! can be most
conveniently obtained by introducing the generating funct

H~w1 ,w2 ,w3![ (
n1 ,n2 ,n3

h~lW !w1
n1w2

n2w3
n3 , ~30!

wheren1 , n2, andn3 are the components of the vectorlW ,
lW 5eW1n11eW2n21eW3n3. Multiplying both sides of Eqs.~25!
and~26! by w1

n1w2
n2w3

n3 and performing summation, we the
find thatH(w1 ,w2 ,w3) is given explicitly by

H~w1 ,w2 ,w3!

52 l

(
n

„An~wunu
n/unu21!h~eW n!1rs~An2A2n!wunu

n
…

l(
n

An~wunu
2n/unu21!26~ f 1g!

,

~31!

an expression which allows us to determine the station
density profiles as seen from the carrier which moves wit
constant velocityVc .

Inversion of the generating function defined by Eq.~31!
then yields, after rather lengthy but straightforward calcu
tions, the following explicit result for the local deviatio
from the unperturbed density:

h~lW !5a21H(
n

Anh~eW n!¹2n2rs~A12A21!

3~¹12¹21!J F~lW !, ~32!

whereF(lW ) is given by

F~lW !5S A21

A1
D n1/2E

0

`

e2xI n1
S 2

AA1A21

a
xD

3I n2S 2
A2

a
xD I n3S 2

A2

a
xDdx ~33!

and

a5(
n

An1
6~ f 1g!

l
5A11A2114A21

6~ f 1g!

l
.

~34!

Consequently, the particle density distribution, as seen fr
the carrier moving with a constant velocityVc , obeys

k~lW !5rs1a21

3H(
n

Anh~eW n¹2n2rs!~A12A21!

3~¹12¹21!J F~lW !, ~35!
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where we have to determine three yet unknown parame
A1 , A21, andA2.

To determine these parameters, in Eq.~32! we set lW

5eW1 , lW 5eW 21, and lW 5eW2, which results in the system o
three closed-form equations determining the unknown fu
tions An , n5$61,2%,
ts
fin
n

ed

ing
vi-
if

e

he
rs

-

An511
6t*

l t
pnH 12rs2rs~A12A21!

detC̃n

detC̃
J , ~36!

whereC̃ is a square matrix of the third order defined as
S A1¹21F~eW1!2a A21¹1F~eW1! A2¹22F~eW1!

A1¹21F~eW 21! A21¹1F~eW 21!2a A2¹22F~eW 21!

A1¹21F~eW2! A21¹1F~eW2! A2¹22F~eW2!2a
D , ~37!
e

while C̃n stands for the matrix obtained fromC̃ by replacing
the nth column by a column vector„(¹12¹21)F(eW n)…n .
Equation~35!, together with the definition of the coefficien
An , constitutes the first general result of our analysis de
ing the density distribution in the percolative environme
under study.

B. General force-velocity relation

Substituting Eqs.~32! and~37! into Eq. ~29!, we find that
the stationary velocity of the carrier particle is defin
-
t

implicitly as the solution of equation

Vc5
s

t
~p12p21!~12rs!

3H 11rs

6t*

l t

p1 detC̃12p21 detC̃21

detC̃
J 21

, ~38!

whereC̃1 and C̃21 are the following square matrices of th
third order:
C̃15S ~¹12¹21!F~eW1! A21¹1F~eW1! A2¹22F~eW1!

~¹12¹21!F~eW 21! A21¹1F~eW 21!2a A2¹22F~eW 21!

~¹12¹21!F~eW2! A21¹1F~eW2! A2¹22F~eW2!2a
D ~39!

and

C̃215S A1¹21F~eW1!2a ~¹12¹21!F~eW1! A2¹22F~eW1!

A1¹21F~eW 21! ~¹12¹21!F~eW 21! A2¹22F~eW 21!

A1¹21F~eW2! ~¹12¹21!F~eW2! A2¹22F~eW2!2a
D . ~40!
Equation~38! represents our second principal result defin
the force-velocity relation in the dynamic percolative en
ronment for an arbitrary field and arbitrary rates of the d
fusive and renewal processes.

V. CARRIER VELOCITY IN THE LIMIT OF SMALL
APPLIED FIELD E, FRICTION COEFFICIENT
AND CARRIER DIFFUSIVITY IN DYNAMIC

PERCOLATIVE ENVIRONMENT

We now consider the case when the applied external fi
E is small. Expanding the transition probabilitiesp1 andp21
in the Taylor series up to the first order in powers of t
external field, i.e.,
-

ld

p615
1

6
6

sbE

12
1O~E2!, ~41!

we find thatVc , defined by Eq.~29!, follows

Vc;
s

6t
$sbE~12rs!2„h~eW1!2h~eW 21!…%. ~42!

On the other hand, Eq.~32! entails that

h~eW1!2h~eW 21!5
2srs~12rs!t*

l t„a0L~2A0 /a0!2A0…12rst
bE

1O~E2!, ~43!
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where

A05 limE→0An511
t*

l t
~12rs! ~44!

and

a05 limE→0a56S 11
t* ~12rs!

l t
1

f 1g

l D , ~45!

while

L~x![H E
0

`

e2tI 0
2~xt!„I 0~xt!2I 2~xt!…dtJ 21

5$P~0;3x!2P~2eW1 ;3x!%21, ~46!

P(rW;j) being the generating function,

P~rW;j![(
j 50

1`

Pj~rW !j j , ~47!

of the probabilityPj (rW) that a walker starting at the origi
and performing a Polya random walk on the sites of a thr
dimensional cubic lattice will arrive on thej th step to the site
with the lattice vectorrW @3#.

Consequently, we find that in the limit of a small applie
field E the force-velocity relation in Eq.~38! attains the
physically meaningful form of the Stokes formulaE5zVc ,
which signifies that the frictional force exerted on the carr
by the environment particles isviscous. The effective friction
coefficientz is the sum of two terms,

z5z01zcoop, ~48!

where the first term represents a mean-field-type resulz0
56t/bs2(12rs) @see Eq.~7!#, and the second onezcoop
obeys

zcoop5
12rst*

bs2l ~12rs!„a0L~2A0 /a0!2A0…
. ~49!

The second contribution has a more complicated origin,
is associated with the cooperative behavior—formation of
inhomogeneous stationary particle distribution around
carrier moving with constant velocityVc . Needless to say
such an effect cannot be observed within the framework
previous models of dynamic percolation, since there the
rier does not influence the host medium dynamics@13–
17,19–22#.

Let us now compare the relative importance of two co
tributions, i.e.,z0 andzcoop, to the overall friction. In Fig. 2
we plot the ratioz/z0 versus the creation ratef for three
different values of the densityrs , rs50.9, 0.7, and 0.5,
while the annihilation rate is prescribed by the relationg
5 f (12rs)/rs . This figure shows that the cooperative b
havior clearly dominates at small and moderatef ~which also
entails small values ofg!, while for largerf, whenz/z0 tends
to 1, the mean-field behavior becomes most important.
cooperative behavior also appears to be more pronounce
larger densitiesrs .
-

r

d
n
e

f
r-

-

-

e
at

Next consider some analytical estimates. We start w
the situation in which diffusion of the environment particl
is suppressed, i.e. whenl 50. In this case, we obtain

zcoop

z0
5

2rs

~12rs!S 2

y
L~y!21D , ~50!

where

y5
1

3 S 11
t

t*

~ f 1g!

~12rs!
D 21

. ~51!

Suppose first thatrs is small, rs!1. Then y'1/3„1
1t/t* ( f 1g)…, and we can distinguish between two situ
tions: whent!( f 1g)/t* , i.e. when the carrier moves faste
than the environment reorganizes itself; and the oppo
limit t@( f 1g)/t* , when the environment changes ve
rapidly compared to the motion of the carrier. In the form
case we find that y'1/3, which yields zcoop/z0
'2rs /„6L(1/3)21…, L(1/3)'0.7942, while in the latter
case we havey't* /3t( f 1g) and zcoop/z0'rst* /3t( f
1g). Note that in both cases the ratiozcoop/z0 appears to be
small, which signifies that at small densitiesrs the mean-
field friction dominates. Such a result is consistent with t
behavior depicted in Fig. 2 and is not counterintuitive,
course, since in the absence of particle diffusion, which
fectively couples the density evolution at different latti
sites, no significant cooperative behavior can emerge at s
densities. On the other hand, at relatively high densitiesrs
;1 andt/(12rs)@t* /( f 1g)@t, when the carrier moves
at a much faster rate than that at which the host med
reorganizes itself, we find thatzcoop/z0't* /3t( f 1g)@1.
This result stems from the circumstance that in sufficien
dense environments modeled by dynamic percolation

FIG. 2. The ratio of the overall friction coefficient and th
mean-field friction vs the creation rate for three different values
the mean densityrs . The upper curve corresponds tors50.9, the
intermediate curve tors50.7, and the lower curve tors50.5. The
diffusion times of the carrier and of the ‘‘environment’’ particle
are taken equal to each other,t5t* , and the lattice spacingl is set
equal to unity.
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highly inhomogeneous density profile emerges even in
absence of particle diffusion. Here, on the one hand,
carrier significantly perturbs the particle density in its imm
diate vicinity. On the other hand, the density perturban
created by the carrier does not shift the global balance
tween creation and annihilation events, i.e., the mean par
density is still equal tors , as we set out to show in wha
follows. The latter constraint then induces the appearanc
essential correlations in particle distribution, and hence,
appearance of cooperative behavior.

Let us consider the opposite case when the renewal
cesses are not allowed, which means that the particle num
is conserved and local density in the percolative environm
evolves only due to particle diffusion. In this case we fin

zcoop

z0
5

2t* rs

„l t1t* ~12rs!…„6L~1/3!21…
. ~52!

Here the ratiozcoop/z0 can be large, and the ‘‘cooperative
friction dominates the mean-field one whenl t!t* (3rs
21), which occurs at sufficiently high densities and in t
limit when the carrier moves at a much faster rate than tha
which the environment reorganizes itself. Otherwise,
mean-field friction prevails.

To estimate the carrier particle diffusion coefficientDc
we assume the validity of the Einstein relation, i.e.,bDc
5z21. We find that, in the general case, the carrier diffus
coefficientDc reads

Dc5
s2~12rs!

6t H 12
2rst*

l t S a0L~2A0 /a0!21

1
t* ~3rs21!

l t D 21J . ~53!

In the particular case of a conserved particle number, w
f ,g→0 but their ratiof /g is kept fixed, f /g5rs /(12rs),
the latter equation reduces to the classical result

Dc
NK5

s2~12rs!

6t H 12
2rst*

l t S 6A0L~1/3!21

1
t* ~3rs21!

l t D 21J , ~54!

obtained earlier in Refs.@24# and@25# by different analytical
techniques. The result in Eq.~54! is known to be exact in the
limits rs!1 andrs;1, and serves as a very good appro
mation for the self-diffusion coefficient in hard-core lattic
gases of arbitrary density@26#.

It also seems interesting to analyze how the random a
hilation and creation of particles can modify the se
diffusion coefficient compared to the situation when the p
ticle number is conserved. In Fig. 3 we plot the ratioDc

NK/Dc

(5z/zNK) versus the creation ratef for three different values
of the densityrs , rs50.9, 0.7 and 0.5. Again, the value o
the annihilation rateg is prescribed by the relationg5 f (1
2rs)/rs . Figure 3 shows that renewal processes consid
ably affect the friction coefficient, and that the ratioz/zNK
e
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-
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n
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strongly deviates from the unity with the growth of the cr
ation rate. The overall friction also falls off when the dens
increases.

Finally, in the absence of particle diffusion~fluctuating-
site percolation!, our result for the carrier particle diffusion
coefficient reduces to

Dc
per5

s2~12rs!

6t
$122rs„4@~12rs!1~ f 1g!t/t* #L~y!

13rs21…21%. ~55!

Note, however, that this result only applies when bothf and
g are larger than zero, such that the renewal processes
place. In fact, the underlying decoupling scheme is o
plausible in this case. Similar to the approximate theories
Refs.@24# and@25#, our approach predicts that in the absen
of the renewal processesDc

per vanishes only whenrs→1,
which is an incorrect behavior.

VI. ASYMPTOTIC BEHAVIOR OF THE DENSITY
PROFILES AT LARGE DISTANCES IN FRONT OF

AND PAST THE CARRIER

The density profiles at large separations in front of a
past the carrier can be readily deduced from the asympto
behavior of the following generating function:

N~w1![ (
n152`

1`

h~n1 ,n250,n350!w1
n1 . ~56!

Inversion of Eq.~31!, with respect to the symmetric coord
natesn2 andn3, then yields

FIG. 3. The ratio of the overall friction coefficient and the fric
tion coefficient in the conserved particle number case vs the
ation rate for three different values of the mean densityrs . The
upper curve corresponds tors50.5, the intermediate curve tors

50.7, and the lower curve tors50.9. Diffusion times aret5t*
and l 51.
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N~w1!5
„A1h~eW1!1rs~A12A21!…~w121!1„A21h~eW 21!2rs~A12A21!…~w1

2121!

a2A1w1
212A21w1

3E
0

`

exp@2x#I 0
2S 2A2

a2A1w1
212A21w1

xD dx1
4A2h~eW2!

a2A1w1
212A21w1

E
0

`

exp@2x#I 0S 2A2

a2A1w1
212A21w1

xD
3XI 1S 2A2

a2A1w1
212A21w1

xD 2I 0S 2A2

a2A1w1
212A21w1

xD Cdx. ~57!
nc

is
ns

les

an

n-
ich
y-

on-

-
that
e

per-
We note now thatN(w1) is a holomorphic function in the
regionW1,w1,W2, where

W15
a24A2

2A21
2AS a24A2

2A21
D 2

2
A1

A21
~58!

and

W25
a24A2

2A21
1AS a24A2

2A21
D 2

2
A1

A21
. ~59!

As a consequence, the asymptotic behavior ofh(n1 ,n2
50,n350) in the limit n1→` (n1→2`) is controlled by
the behavior ofN(w1) in the vicinity of w15W2 (w1
5W1) ~see, for example, the analysis of the generating fu
tion singularities developed in Ref.@33#!.

A. Asymptotics of the density profiles at large separations
in front of the carrier

Consider first the asymptotic behavior of the density d
tribution of the ‘‘environment’’ particles at large separatio
in front of the carrier. Using the fact that

E
0

`

exp@2x#I 0~yx!„I 1~x!2I 0~x!…dx ~60!

is a regular function wheny→1/2, while

E
0

`

exp@2x#I 0
2~yx!dx→ 1

p
lnS 1

122yD , ~61!

we find that

N~w1! ;
w1→W2

F „A1h~eW1!1rs~A12A21!…~W221!

4pA2

1
„A21h~eW 21!2rs~A12A21!…~W 2

2121!

4pA2
G

3 ln~W22w1!. ~62!

Then,~cf. Ref. @33#! we obtain the asymptotical result

h~n1,0,0!;n1→`

K1

n1
e2n1 /l1, ~63!

where
-

-

l1[ ln21S a/222A2

A21
1AS a/222A2

A21
D 2

2
A1

A21
D ~64!

and

K15F „A1h~eW1!1rs~A12A21!…~W221!

4pA2

1
„A21h~eW 21!2rs~A12A21…~W 2

2121!

4pA2
G.0,

~65!

which signifies that the density of the environment partic
in front of the carrier is higher than the average valuers and
approachesrs at large separations from the carrier as
exponential function of the distance.

B. Asymptotics of the density profiles at large separations
past the carrier

We next consider the asymptotic behavior of the enviro
ment particle density profiles past the carrier particle, wh
turn out to be very different depending on whether the d
namics of the percolative environment obeys the strict c
servation of the environment particle number or not~the re-
newal processes are suppressed or allowed!. The sketch of
this behavior is presented in Fig. 4.

~a! Nonconserved particle number. In the case when par
ticles may disappear and reappear on the lattice, one has
the rootW1,1. We then find, following essentially the sam
lines as in Sec. VI A that

N~w1! ;
w1→W1

F „A1h~eW1!1rs~A12A21!…~W121!

4pA2

1
„A21h~eW 21!2rs~A12A21!…~W 1

2121!

4pA2
G

3 lnS 1

w12W1
D . ~66!

Hence, in the nonconserved case, the approach to the un
turbed valuers is also exponential whenn1→2`, and fol-
lows

hn1,0,0 ;
n1→2`

K2

un1u
e2un1u/l2, ~67!
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where

l2[ ln21S a/222A2

A21
2AS a/222A2

A21
D 2

2
A1

A21
D ~68!

and

K25F „A1h~eW1!1rs~A12A21!…~W121!

4pA2

1
„A21h~eW 21!2rs~A12A21!…~W 1

2121!

4pA2
G

,0, ~69!

which implies that the particle density past the carrier
lower than the average. Note that, in the general case,l1

,l2 , which means that the depleted region past the car
is more extended in space than the traffic-jam-like region
front of the carrier. The density profiles are therefore asy
metric with respect to the origin,n150. Since creation of
particles is favored~suppressed! in depleted~jammed! re-
gions, while annihilation is suppressed~favored!, one might
expect that this will shift the overall density in the syste
i.e. the average density of the environment particles will d
fer from rs . Interestingly, the overall deviation, i.e. the su
of local deviations over the volume of the system, of t
density of the environment particles from the average va
rs , appears to be equal exactly to zero,

H~w151,w251,w351![0, ~70!

and hence, the driven carrier does not perturb the glo
balance between creation and annihilation of the envir
ment particles. This is not, however, ana priori evident re-
sult in view of the asymmetry of the density profiles.

~b! Conserved particle number. Finally, we turn to the
analysis of the shape of the density profiles of the percola
environment past the carrier in the particular limit when t

FIG. 4. A sketch of the asymptotic density profiles in front
and past the stationary moving carrier. The abbreviation C
stands for the ‘‘conserved particle number.’’ The two solid lines
the l.0 andl,0 domains denote exponential profiles, Eqs.~63!
and ~67!. The dashed line in the domainl,0 stands for the alge
braic law @Eq. ~72!#.
s

er
n
-

,
-

e

al
-

e

host medium evolves only due to diffusion, while creati
and annihilation of particles are completely suppressed
this case, in which the particles number is explicitly co
served, one has that, for arbitrary values of the field a
particle average density, the rootW1[1 and, consequently
the form of the generating function are qualitatively differe
from that in Eqs.~62! and ~66!,

N~w1! ;
w1→11

F „A1h~eW1!2A21h~eW 21!…

4pA2
1
„2rs~A12A21!…

4pA2
G

3~w121!lnS 1

w121D . ~71!

Equation ~71! implies that in the limit when the particle
number is conserved, the large-n1 asymptotic behavior of
hn1,0,0 is described by an algebraic function ofn1 with a
logarithmic correction; that is,

hn1,0,0;
K2ln~ un1u!

n1
2

, ~72!

where K2 is an n1-independent constant. Remarkably, t
power-law decay of the correlations implies the existence
quasi-long-range order in the percolative environment p
the carrier. In the conserved case the mixing of the thr
dimensional percolative environment is not very efficie
and there are considerable memory effects—the host
dium remembers the passage of the carrier on large s
and time scales.

VII. CONCLUSIONS

To conclude, we analytically studied the dynamics o
carrier driven by an external fieldEW in a three-dimensiona
environment modeled by dynamic percolation on a cubic
tice partially filled with mobile, hard-core ‘‘environment’
particles which can spontaneously disappear and reap
~renewal processes! in the system with some prescribe
rates. Our analytical approach was based on the master e
tion, describing the time evolution of the system, which
lowed us to evaluate a system of coupled dynamical eq
tions for the carrier velocity and a hierarchy of correlati
functions. We invoked an approximate closure scheme ba
on the decomposition of the third-order correlation functio
which was first introduced in Ref.@23# for a related model of
a driven carrier dynamics in a one-dimensional lattice g
with conserved particle number. Within the framework
this approximation, we derived a system of couple
discrete-space equations describing the evolution of the d
sity profiles of the environment, as seen from the mov
carrier, and its velocityVc . We showed thatVc depends on
the density of the environment particles in front of and p
the carrier. Both densities depend on the magnitude of
velocity, as well as on the rate of the renewal and diffus
processes. As a consequence of such a nonlinear couplin
the general case~i.e. for an arbitrary driving field and arbi
trary rates of renewal and diffusive processes!, Vc was found
only implicitly, as the solution of a nonlinear equation rela
ing its value to the system parameters. This equation, wh

N
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defines the force-velocity relation for the dynamic perco
tion under study, simplifies considerably in the limit of sm
applied fieldEW . We found that in this limit it attains the
physically meaningful form of the Stokes formula, whic
implies, in particular, that the frictional force exerted on t
carrier by the environment modeled by dynamic percolat
is viscous. In this limit, the carrier velocity and the friction
nts

ys

s

ng

ys

e

lid
-
l

n

coefficient were calculated explicitly. In addition, we dete
mined the self-diffusion coefficient of the carrier in the a
sence of the field, and showed that it reduces to the w
known result of Refs.@24# and @25# in the limit when the
particle number is conserved. Furthermore, we found that
density profile around the carrier becomes strongly inhom
geneous.
M.
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